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Abstract

In this chapter we explain variance reduction techniques from the Hilbert space
standpoint, in the terminating simulation context. We use projection ideas to ex-
plain how variance is reduced, and to link different variance reduction techniques.
Our focus is on the methods of control variates, conditional Monte Carlo, weighted
Monte Carlo, stratification, and Latin hypercube sampling.

1 Introduction

The goal of this chapter is to describe variance reduction techniques from a
Hilbert space perspective in the terminating simulation setting, with the fo-
cal point lying on the method of control variates. Several variance reduction
techniques have an intuitive geometric interpretation in the Hilbert space set-
ting, and it is often possible to obtain rather deep probabilistic results with
relatively little effort by framing the relevant mathematical objects in an ap-
propriate Hilbert space. The procedure employed to reach most results in this
context consists of three stages:

(1) Find a pertinent space endowed with an inner product.
(2) Apply Hilbert space results towards a desired conclusion.
(3) Translate the conclusions back into probabilistic language.

The key geometric idea used in Stage 2 is that of “projection”: Given an
element y in a Hilbert space H and a subset M of the Hilbert space, it holds
under mild conditions that there exists a unique element in M that is closest
to y. The characterization of this element depends on the space H determined
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by Stage 1, on y, and on M ; in essence it is found by dropping a perpendicular
from y to M .

The Hilbert space explanation of control variates, and to a somewhat lesser
extent that of conditional Monte Carlo, is closely related to that of other
variance reduction techniques; in this chapter we bridge these connections
whenever they arise. From the projection perspective, it is often possible to
link variance reduction techniques for which the relevant Hilbert space H and
element y ∈ H are the same. The articulation is done by judiciously choosing
the subset M for each particular technique.

We do not attempt to provide a comprehensive survey of control variates or
of the other techniques covered in this chapter. As to control variates, several
publications furnish a broader picture; see, for example, Lavenberg and Welch
(1981), Lavenberg et al. (1982), Wilson (1984), Rubinstein and Marcus (1985),
Venkatraman and Wilson (1986), Law and Kelton (2000), Nelson (1990), Loh
(1995), and Glasserman (2004). For additional material on other variance re-
duction techniques examined here, refer to the items in the References section
and to references therein.

This chapter is organized as follows: Section 2 is an overview of control vari-
ates. In Section 3 we review Hilbert space theory and present several examples
that serve as a foundation for the rest of the chapter. Section 4 is about control
variates in Hilbert space. The focus of Section 5 is on the method of conditional
Monte Carlo, and on combinations of conditional Monte Carlo with control
variates. Section 6 describes how control variates and conditional Monte Carlo
can reduce variance cooperatively. The subject of Section 7 is the method of
weighted Monte Carlo. In Sections 8 and 9 we describe stratification tech-
niques and Latin hypercube sampling, respectively. The last section presents
an application of the techniques we investigate. As stated above, the focus
of this chapter is in interpreting and connecting various variance reduction
techniques in a Hilbert space framework.

2 Problem Formulation and Basic Results

We study efficiency improvement techniques for the computation of an un-
known scalar parameter α that can be represented as α = EY , where Y is
a random variable called the response variable, in the terminating simula-
tion setting. Given n independent and identically distributed (i.i.d.) replicates
Y1, . . . , Yn of Y produced by the simulation experiment, the standard estimator
for α is the sample mean

Ȳ =
1

n

n∑

k=1

Yk.
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The method of control variates (CVs) arises when the simulationist has avail-
able a random column vector X = (X1, . . . , Xd) ∈ Rd, called the control, such
that X is jointly distributed with Y , EX = µx is known, and it is possible to
obtain i.i.d. replicates (Y1,X1), . . . , (Yn,Xn) of (Y,X) as a simulation output.
Under these conditions, the CV estimator is defined by

ŶCV (λ) = Ȳ − λT (X̄− µx), (1)

where λ = (λ1, . . . , λd) ∈ Rd is the vector of control variates coefficients; ·T
denotes transpose, vectors are defined as columns, and vectors and matrices
are written in bold.

The following holds throughout this chapter:

Assumption 1 E(Y 2 +
∑d

i=1 X2
i ) < ∞ and the covariance of (Y,X), defined

by

Σ =




σ2
y Σyx

Σxy Σxx


 ,

is non-singular.

The first part of Assumption 1 is satisfied in most settings of practical interest.
Furthermore, when Σ is singular it is often possible to make it non-singular
by reducing the number of controls X; see the last paragraph of Example 5.

Naturally, λ is chosen to minimize Var ŶCV (λ), which is the same as

minimizing σ2
y − 2λTΣxy + λTΣxxλ. (2)

The first and second-order optimality conditions for this problem imply that
there exists a unique optimal solution given by

λ∗ = Σ−1
xxΣxy. (3)

With this choice of λ = λ∗ the CV estimator variance is

Var ŶCV (λ∗) = Var Ȳ (1−R2
yx), (4)

where

R2
yx =

ΣyxΣ
−1
xxΣxy

σ2
y

is the square of the multiple correlation coefficient between Y and X. CVs
reduce variance because 0 ≤ R2

yx ≤ 1 implies Var ŶCV ≤ Var Ȳ in (4). The

central limit theorem (CLT) for ŶCV asserts that, under Assumption 1,

n1/2(ŶCV (λ∗)− α) ⇒ N(0, σ2
CV ),
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where σ2
CV = σ2

y(1−R2
yx),⇒ denotes convergence in distribution, and N(0, σ2)

is a zero-mean Normal random variable with variance σ2.

In general, however, the covariance structure of the random vector (Y,X) may
not be fully known prior to the simulation. This difficulty can be overcome by
using the available samples to estimate the unknown components of Σ, which
can then be used to estimate λ∗. Let λn be an estimator of λ∗ and suppose
that λn ⇒ λ∗ as n →∞. Then, under Assumption 1,

n1/2(ŶCV (λn)− α) ⇒ N(0, σ2
CV ), (5)

as n → ∞; see Glynn and Szechtman (2002) for details. Equation (5) means
that estimating λ∗ causes no loss of efficiency as n →∞, if λn ⇒ λ.

Thus far we have only considered linear control variates of the form Ȳ −λT (X̄−
µx). In some applications, however, the relationship between the response and
the CVs is non-linear, examples of which are: Ȳ exp(λT (X̄ − µx)), Ȳ X̄/µx,
and Ȳ µx/X̄ . In order to have a general representation of CVs we introduce a
function f : Rd+1 → R that is continuous at (y, µx) with f(y, µx) = y. This
property ensures that f(Ȳ , X̄) → α a.s. if (Ȳ , X̄) → (α, µx) a.s., so we only
consider such functions.

The limiting behavior of f(Ȳ , X̄) is characterized in Glynn and Whitt (1989,
Theorem 9) under the assumption that the i.i.d. sequence {(Yn,Xn) : n ≥ 1}
satisfies the CLT

√
n((Ȳ , X̄)−(α, µx)) ⇒ N(0,Σ), and that f is continuously

differentiable in a neighborhood of (α, µx) with first partial derivatives not all
zero at (α, µx). Then

√
n(f(Ȳ , X̄)− α) ⇒ N(0, σ2

f ), (6)

as n →∞, where σ2
f is given by

σ2
f = σ2

y + 2∇xf(α, µx)
TΣxy + ∇xf(α, µx)

TΣxx∇xf(α, µx), (7)

and ∇xf(y,x) ∈ Rd is the vector with ith component ∂f/∂xi(y,x).

The asymptotic variance σ2
f is minimized, according to Equation (2) with

∇xf(α, µx) in lieu of λ, by selecting f ∗ such that ∇xf
∗(α, µx) = −Σ−1

xxΣxy

in (7); that is, σ2
f∗ = σ2

y(1 − R2
yx). In other words, non-linear CVs have at

best the same asymptotic efficiency as ŶCV (λ∗). Notice, however, that for
small sample sizes it could happen that non-linear CVs achieve more (or less)
variance reduction than linear CVs.

The argument commonly used to prove this type of result is known as the
Delta method; see Chapter 2 or, for a more detailed treatment, Serfling (1980,
p. 122). The reason why

√
n(f(Ȳ , X̄)−α) converges in distribution to a normal
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random variable is that f is linear in a neighborhood of (α, µx) because f is
differentiable there, and a linear function of a normal random variable is again
normal.

To conclude this section, for simplicity let the dimension d = 1 and suppose
that only an approximation of µx, say γ = µx + ε for some scalar ε, is known.
This is the setting of biased control variates (BCV). The BCV estimator is
given by

ŶBCV (λ) = Ȳ − λ(X̄ − γ).

The bias of ŶBCV (λ) is λε, and the mean-squared error is

E(ŶBCV (λ)− α)2 = Var Ȳ + λ2E(X̄ − γ)2 − 2λ Cov(Ȳ , X̄).

Mean-squared error is minimized by

λn = Cov(Ȳ , X̄)/E(X̄ − γ)2, (8)

and

E(ŶBCV (λn)− α)2 = Var Ȳ

(
1− Cov(Ȳ , X̄)2

Var Ȳ E(X̄ − γ)2

)
,

which is (4) when ε = 0; see Schmeiser et al. (2001) for more details on BCVs.

3 Hilbert Spaces

We present basic ideas about Hilbert spaces, mainly drawn from Kreyszig
(1978), Bollobas (1990), Zimmer (1990), Williams (1991), and Billingsley (1995).
We encourage the reader to consult those references for proofs, and for addi-
tional material. We illustrate the concepts with a series of examples that serve
as foundational material for the rest of the chapter.

An inner product space is a vector space V with an inner product 〈x, y〉 defined
on it. An inner product on V is a mapping of V × V into R such that for all
vectors x, y, z and scalars α, β we have

(i) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.
(ii) 〈x, x〉 ≥ 0, with equality if and only if x = 0.
(iii) 〈x, y〉 = 〈y, x〉.

An inner product defines a norm on X given by

‖x‖ =
√
〈x, x〉. (9)

A Hilbert space H is a complete inner product space, complete meaning that
every Cauchy sequence in H has a limit in H.
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The next three examples present the Hilbert spaces that will be employed
throughout this chapter.

Example 1 Let (Ω,F ,P) be a probability space and

L2(Ω,F ,P) =
{
Y ∈ (Ω,F ,P) : EY 2 =

∫

Ω
Y (ω)2dP(ω) < ∞

}

the space of square-integrable random variables defined on (Ω,F ,P). For X,Y ∈
L2(Ω,F ,P), the inner product is defined by

〈X,Y 〉 = E(XY ) =
∫

Ω
X(ω)Y (ω)dP(ω), (10)

and the norm is given by

‖Y ‖ =
√

EY 2 =
(∫

Ω
Y (ω)2dP(ω)

)1/2

, (11)

by (9). It can be easily verified that the inner product defined by (10) has
properties (i), (ii), and (iii). The space L2(Ω,F ,P) is complete under this
norm (Billingsley, 1995, p. 243). Note that

Var Y = ‖Y − EY ‖2. (12)

Example 2 The space Rn is the set of vectors x = (x1, . . . , xn) in Rn, and
can be made into a Hilbert space by defining the inner product for x,y ∈ Rn

as

〈x,y〉 =
n∑

j=1

xjyj. (13)

The norm induced by (13) is

‖x‖ =
√
〈x,x〉 =




n∑

j=1

x2
j




1/2

.

The space Rn is complete under this norm (Bollobas, 1990, p. 133).

Example 3 Consider independent random variables Xi with distribution func-
tion Fi(xi), 1 ≤ i ≤ d, and define F (x) =

∏d
i=1 Fi(xi), for x = (x1, . . . , xd).

Write X = (X1, . . . , Xd), and let f : Rd → R be a Borel-measurable function
in L2(dF ), the space of square integrable functions with respect to F . This
space can be made into a Hilbert space by defining the inner product:

〈f, g〉 =
∫

f(x)g(x)dF (x), (14)

for any f, g ∈ L2(dF ). The norm induced by (14) is

‖f‖ =
(∫

f(x)2dF (x)
)1/2

,
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and L2(dF ) is complete under this norm (Billingsley, 1995, p. 243).

The notion of orthogonality among elements lies at the heart of Hilbert space
theory, and extends the notion of perpendicularity in Euclidean space. Two
elements x, y are orthogonal if

〈x, y〉 = 0.

From here, there is just one step to the Pythagorean theorem:

Result 1 (Pythagorean Theorem) Kreyszig (1978). If x1, . . . , xn are pairwise
orthogonal vectors of an inner product space V then

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

=
n∑

i=1

‖xi‖2. (15)

Let us write

x⊥ = {y ∈ V : 〈x, y〉 = 0}
for the set of orthogonal vectors to x ∈ V , and

S⊥ = {y ∈ V : 〈x, y〉 = 0, ∀x ∈ S}

for S ⊂ V . Finally, a set (x1, . . . , xn) of elements in V is orthogonal if all its
elements are pairwise orthogonal.

We often work with a subspace S of a Hilbert space H defined on X, by which
we mean a vector subspace of X with the inner product restricted to S × S.
It is important to know when S is complete, and therefore a Hilbert space. It
is easy to prove that S is complete if and only if S is closed in H.

Consider a non-empty subset M of an inner product space V . Central to the
concepts discussed in this chapter is to know when, given a point y in V , there
exists a unique point x ∈ M that minimizes the distance from y to M , where
the distance from y to M is defined to be d(y,M) = infv∈M ‖y − v‖. The
following result provides an answer to this problem.

Result 2 (Projection Theorem) Kreyszig (1978). Let M be a complete sub-
space of an inner product space V , and let y ∈ V be fixed. Then there exists a
unique x = x(y) ∈ M such that

d(y,M) = ‖y − x‖.

Furthermore, every y ∈ V has a unique representation of the form

y = x + z,

7
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PMy = x

(I − PM)y = z

M

Fig. 1. Orthogonal Projection

where x ∈ M and z ∈ M⊥. Then

〈x, y − x〉 = 〈x, z〉 = 0. (16)

The second part of Result 2 implies that if M is a complete subspace of an
inner product space V , then there exists a function PM : V → M defined by
PMy = x. We call PM the orthogonal projection of V onto M , see Figure 1.

Among the properties that the projection functional enjoys are:

a) PMx = x, for all x ∈ M .
b) PMz = 0, for all z ∈ M⊥.
c) ‖I − PM‖ ≤ 1.

Applying Result 2 to Examples 1, 2, and 3 leads to several variance reduction
techniques in the Hilbert space setting. The following example forms the basis
for the method of conditional Monte Carlo.

Example 4 In the setting of Example 1, consider a sub-σ-algebra G of F . The
set of square integrable random variables defined on L2(Ω,G,P) is a complete
subspace of L2(Ω,F ,P). Therefore, for Y ∈ L2(Ω,F ,P) fixed, there exists an
element Z ∈ L2(Ω,G,P) that is the closest point to Y in L2(Ω,G,P) and for
which

〈Y − Z,W 〉 = 0, (17)

for W ∈ L2(Ω,G,P) arbitrary. Choosing W = IB, B ∈ G, Equation (17)
shows that Z is the conditional expectation of Y given G, Z = E(Y |G). We
also can write PGY = E(Y |G); see Williams (1991) for more details.

Observe that Equation (17) and the Pythagorean theorem imply that

‖Y ‖2 = ‖Y − Z‖2 + ‖Z‖2. (18)

8



Using Equation (12), centering Y so that EY = 0, we have that Equation (18)
is the variance decomposition formula (Law and Kelton, 2000):

Var Y = E Var(Y |G) + Var E(Y |G), (19)

where Var(Y |G) = E(Y 2|G)− (E(Y |G))2.

We continue with an example with a view towards control variates.

Example 5 For elements X1, . . . , Xd ∈ L2(Ω,F ,P) with zero mean (oth-
erwise re-define Xi := Xi − EXi), define M = {Z ∈ L2(Ω,F ,P) : Z =∑d

i=1 βiXi, for all βi ∈ R, i = 1, . . . , d}. For Y ∈ L2(Ω,F ,P), Result 2 then
guarantees the existence of constants β∗1 = β∗1(Y ), . . . , β∗d = β∗d(Y ) such that,

PM(Y −EY ) =
d∑

i=1

β∗i Xi, and (I−PM)(Y −EY ) = (Y −EY )−
d∑

i=1

β∗i Xi. (20)

If Y − EY ∈ M , using property a) of the projection operator we obtain (I −
PM)(Y − EY ) = 0, so that

Var

(
Y −

d∑

i=1

β∗i Xi

)
= 0. (21)

If the elements X1, . . . , Xd form an orthogonal set, applying Equation (15) we
have

‖(I − PM)(Y − EY )‖2 = ‖Y − EY ‖2 − ‖PM(Y − EY )‖2

= ‖Y − EY ‖2 −
d∑

i=1

β∗2i ‖Xi‖2,

so that

Var

(
Y −

d∑

i=1

β∗i Xi

)
= Var Y −

d∑

i=1

β∗2i Var Xi. (22)

When the elements X1, . . . , Xd are not mutually orthogonal but linearly inde-
pendent, the Gram-Schmidt process (Billingsley, 1995, p. 249) yields an or-
thogonal set with the same span as X1, . . . , Xd. In case the Xi’s are linearly
dependent, at least one Xi can be expressed as a linear combination of the oth-
ers, and eliminated from the set X1, . . . , Xd. By noticing that Cov(Xi, Xj) =
〈Xi, Xj〉 we gather that X1, . . . , Xd are linearly independent if and only if their
covariance matrix is non-singular, and X1, . . . , Xd are mutually orthogonal if
and only if their covariance matrix has all its entries equal to zero except for
positive numbers on the diagonal.

We can extend Example 5 to the setting of biased control variates.

9



Example 6 Let X ∈ L2(Ω,F ,P), and M = {Z ∈ L2(Ω,F ,P) : Z = β(X −
γ),∀β ∈ R}, γ 6= EX. Fix an element Y ∈ L2(Ω,F ,P) and let α = EY .
Project Y − α on M :

PM(Y − α) = β∗(X − γ), and (I − PM)(Y − α) = Y − α− β∗(X − γ),

for some β∗ = β∗(Y ) ∈ R. As in the last example we have

‖(I − PM)(Y − α)‖2 = ‖Y − α‖2 − ‖PM(Y − α)‖2

and, since 〈(I − PM)(Y − α), X − γ〉 = 0, it follows that

β∗ =
〈Y − α,X − γ〉
‖X − γ‖2

.

The Pythagorean theorem applied to the denominator in the last equation yields

‖X − γ‖2 = ‖X − EX‖2 + ‖EX − γ‖2, (23)

which is known as the bias-variance decomposition formula.

The following example is geared to the method of control variates when the
optimal control coefficient is estimated from the sample data.

Example 7 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be elements of Rn (cf.
Example 2), and define S = {z ∈ Rn : z = βx, ∀β ∈ R}. By Result 2 we have

PSy = βnx, and (I − PS)y = y − βnx,

for some βn = βn(y). Because 〈y − βnx,x〉 = 0, for ‖x‖ > 0,

βn =
〈x,y〉
‖x‖2

.

We now set the stage for the method of Latin hypercube sampling.

Example 8 Building on Example 3, let M = {h ∈ L2(dF ) : h(x) =
∑d

i=1 hi(xi)}
be the subspace of L2(dF ) spanned by the linear combinations of univariate
functions h1, . . . , hd. Because M is complete, appealing to Result 2 establishes
the existence of an element h∗ = h∗(f) ∈ M , h∗(x) =

∑d
i=1 h∗i (xi), such that

‖f − h∗‖ = infh∈M ‖f − h‖ for f ∈ L2(dF ) fixed, and of a projection oper-
ator PM : PMf = h∗. Similarly, for Mi = {h ∈ L2(dF ) : h(x) = hi(xi)},
1 ≤ i ≤ d, there exists g∗i = g∗i (f) ∈ Mi: ‖f − g∗i ‖ = infh∈Mi

‖f − h‖ and
a projection Pi : Pif = g∗i . To complete the picture, define the subspace
M0 = {β ∈ R : |β| < ∞} which induces the projection P0 : P0f = g∗0, for
g∗0 : ‖f − g∗0‖ = infβ∈M0 ‖f − β‖. We now have:

10



- Let Fi = σ({R × R × · · · × R × B × R × · · · × R : B ∈ B}), where B
is the Borel σ−field, and let F0 be the trivial σ-algebra {∅,R}. For each
Pi, we know that 〈f − Pif, h〉 = 0 for any h ∈ Mi; choosing h(x) =
hi(xi) = IB(xi), B ∈ B, shows that Pif = E(f(X)|Fi) for 1 ≤ i ≤ d, and
P0f = E(f(X)|F0) = Ef(X).

- Suppose P0f = 0. Then (I − PM)f ∈ M⊥
i implies g∗i = Pif = PiPMf =

h∗i , which results in

PM =
d∑

i=1

Pi, and PMf =
d∑

i=1

E(f(X)|Fi). (24)

For general P0f 6= 0, (24) becomes

PM = P0 +
d∑

i=1

(Pi−P0), and PMf = Ef(X)+
d∑

i=1

(E(f(X)|Fi)−Ef(X)).

(25)

The next result, a variant of Result 2, will be useful when we consider the
method of weighted Monte Carlo.

Result 3 Kreyszig (1978) Suppose M 6= ∅ is a closed convex subset of a
Hilbert space H. Then for x ∈ H fixed, x1 = PM(x) is the (unique) closest
point in M to x if and only if

〈x− x1, y − x1〉 ≤ 0,∀y ∈ M. (26)

Later in the chapter we will deal with sequences of projections, say (Pn),
defined on a Hilbert space H that are monotone increasing in that

‖Pix‖ ≤ ‖Pi+1x‖, for i = 1, 2, . . . ,

and x ∈ H arbitrary. Using the completeness of H it can be shown that (Pn)
converges in the following sense:

Result 4 Kreyszig (1978) Let (Pn) be a monotone increasing sequence of pro-
jections Pn defined on a Hilbert space H. Then, for any x ∈ H,

‖Pnx− Px‖ → 0,

and the limit operator P is a projection on H.

An immediate application of this result is the following example.

Example 9 Suppose that (Fn) is an increasing sequence F1 ⊆ F2 ⊆ . . . ⊆
F∞ of σ-algebras such that F∞ = σ(∪∞n=1Fn). Then associated with every
L2(Ω,Fn,P) there exists a projection Pn : L2(Ω,F ,P) → L2(Ω,Fn,P), and

11



the sequence of projections (Pn) is monotone increasing. Let P∞ be the pro-
jection that results from applying Result 4: ‖PnW − P∞W‖ → 0 for any
W ∈ L2(Ω,F ,P), F∞ ⊆ F . Because (I − P∞)W ∈ L2(Ω,Fn,P)⊥, we have

∫

B
WdP =

∫

B
P∞WdP (27)

for any B ∈ Fn. A standard π−λ argument (Durrett, 1996, p. 263) shows that
(27) holds for B ∈ F∞ arbitrary; that is, P∞W = E(W |F∞). The conclusion
is

‖E(W |F∞)− E(W |Fn)‖ → 0, (28)

as n →∞.

We will appeal to Example 9 when dealing with stratification techniques. A
variation of the last example is

Example 10 Suppose that X is random variable with known and finite mo-
ments EX i, i = 1, 2, . . .. Define a sequence of complete subspaces (Md) of
L2(Ω, σ(X),P) by

Md =

{
Z ∈ L2(Ω, σ(X),P) : Z =

d∑

i=1

βi(X
i − EX i),∀βi ∈ R, 1 ≤ i ≤ d

}
,

for d = 1, 2, . . .. Clearly M1 ⊆ M2 ⊆ . . . ⊆ M∞, where M∞ = ∪∞i=1Mi.
Associated with each Md there is, by Result 2, a projection operator Pd with
range on Md such that for W ∈ L2(Ω,F ,P), σ(X) ⊆ F , with EW = 0:

PdW =
d∑

i=1

β∗i (X
i − EX i), (29)

for some constants β∗i = β∗i (W ), 1 ≤ i ≤ d, possibly dependent on d (although
this is not apparent from the notation). Because the sequence of operators (Pd)
is (clearly) monotone increasing, Result 4 ensures the existence of a projection
P∞ in L2(Ω, σ(X),P) that satisfies

‖P∞W − PdW‖ → 0, (30)

as d →∞. Proceeding like in the last example it follows that P∞W = E(W |X),
for W ∈ L2(Ω,F ,P) arbitrary. In other words,

∥∥∥∥∥E(W |X)−
d∑

i=1

β∗i (X
i − EX i)

∥∥∥∥∥ → 0, (31)

as d →∞, by Equations (29) and (30).

We will use the last example in Section 6 to show how conditional Monte Carlo
and control variates reduce variance cooperatively.
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The rest of the chapter is devoted to provide an interpretation of this section’s
examples in terms of variance reduction techniques. We start with the method
of control variates.

4 A Hilbert Space Approach to Control Variates

We build on the sequence of examples from the previous section; Glynn and
Szechtman (2002) is a relevant reference for the issues discussed in this section.

Consider the setting of Example 5: X1, . . . , Xd are zero-mean square integrable
random variables with non-singular covariance matrix Σxx (although this was
not needed in Example 5), and defined on the same probability space as the
response Y , EY 2 < ∞. The goal is to estimate α = EY by averaging n
i.i.d. replicates of Y −∑d

i=1 λiXi to obtain ŶCV (λ) as in Equation (1). Clearly,
Var ŶCV (λ) = 1/n Var(Y −∑d

i=1 λiXi).

From Example 5, ŶCV (λ∗) is the remainder from projecting Y on M ; as
M “grows” the norm of the remainder decreases. Also, because the scalars
λ∗1, . . . , λ

∗
d that minimize Var(Y −∑d

i=1 λiXi) are also the numbers that result
from projecting Y into M , from Result 2 and Equation (16) we know that

〈Y −
d∑

i=1

λ∗i Xi, Z〉 = 0, ∀Z ∈ M.

In particular,

〈Y −
d∑

i=1

λ∗i Xi, λ
∗
kXk〉 = 0, for k = 1, . . . , d. (32)

Therefore, since Cov(Y, Xj) = 〈Y, Xj〉, and Cov(Xi, Xj) = 〈Xi, Xj〉 for 1 ≤
i, j ≤ d,

λ∗i = (Σ−1
xxΣxy)i, for i = 1, . . . , d,

in concordance with Equation (3). When X1, . . . , Xd is an orthogonal set,
Equation (32) yields

λ∗i =
〈Y,Xi〉
〈Xi, Xi〉 =

Cov(Y,Xi)

Var Xi

, i = 1, . . . , d. (33)

We re-interpret the results from Examples 5 through 7 in the CV context:

13



a) Var ŶCV (λ∗) ≤ Var Ȳ because

Var

(
Y −

d∑

i=1

λ∗i Xi

)
= ‖(I − PM)(Y − EY )‖2, by Equation (20)

≤ ‖I − PM‖2‖Y − EY ‖2

≤ Var Y,

by using the projection operator properties of the last section.
b) If Y can be expressed as a linear combination of X1, . . . , Xd, then Var(Y −∑d

i=1 λiXi) = 0 for some λ1, . . . , λd; this is Equation (21).
c) If the controls X1, . . . , Xd are mutually orthogonal, then

Var

(
Y −

d∑

i=1

λiXi

)
= Var Y −

d∑

i=1

Cov(Y,Xi)
2

Var Xi

= Var Y

(
1−

d∑

i=1

ρ2
yxi

)
,

by Equations (22) and (33), where ρyxi
is the correlation coefficient be-

tween Y and Xi, i = 1, . . . , d.
d) With biased control variates in mind, apply Example 6 to the elements

(Ȳ − α) and (X̄ − γ) to get the optimal BCV coefficient

λn = Cov(Ȳ , X̄)/E(X̄ − γ)2,

as expected from (8). That is, BCVs as presented in Section 2 arise from
taking the remainder of the projection of Ȳ − α on the span of X̄ − γ.
Because of (23) we have

Var ŶCV (λ∗) ≤ MSE ŶBCV (λn).

e) Consider the setting of Example 7: There exists a zero-mean control vari-
ate X ∈ R, and the output of the simulation are the sample points
y = (y1, . . . , yn) and x = (x1, . . . , xn). Let ỹ = (y1 − ȳ, . . . , yn − ȳ), and
define the estimator

ŶCV (λn) =
1

n

n∑

j=1

(yj − λnxj),

where λn = 〈x, ỹ〉/‖x‖2. From Example 7 we know that λn arises from

14



projecting ỹ on the span of x: PSỹ = λnx. Now, the sample variance is

1

n

n∑

j=1

(yj − λnxj − ŶCV (λn))2 =
1

n
‖(I − PS)ỹ‖2 − (ŶCV (λn)− ȳ)2

=
1

n
(‖ỹ‖2 − λ2

n‖x‖2) + O(n−1)

=
1

n
‖ỹ‖2(1− ρ2

ỹ,x) + O(n−1),

where ρỹ,x = 〈x, ỹ〉/‖x‖‖ỹ‖, which makes precise the variance reduction
achieved by projecting ỹ on the span of x relative to the crude estimator
sample variance ‖ỹ‖2/n.

Finally, we remark that there is no impediment in extending items a) through
e) to the multi-response setting, where Y is a random vector.

5 Conditional Monte Carlo in Hilbert Space

In this section we address the method of conditional Monte Carlo, paying
special attention to its connection with control variates; we follow Avramidis
and Wilson (1996), and Loh (1995).

Suppose Y ∈ L2(Ω,F ,P) and that we wish to compute α = EY . Let X ∈
L2(Ω,F ,P) be such that E(Y |X) can be analytically or numerically com-
puted. Then

ŶCMC =
1

n

n∑

j=1

E(Y |Xi)

is an unbiased estimator of α, where the E(Y |Xi) are found by first obtaining
i.i.d. samples Xi and then computing E(Y |Xi). We call ŶCMC the conditional
Monte Carlo (CMC) estimator of α; remember that according to Example 4,
ŶCMC results by projecting Y on L2(Ω, σ(X),P). The variability of ŶCMC is
given by

Var ŶCMC =
1

n
Var E(Y |X),

with Equation (19) implying that Var ŶCMC ≤ Var Ȳ . Specifically, CMC elim-
inates the E Var(Y |X) term from the variance of Y .

Sampling from Y − λ(Y −E(Y |X)) also provides an unbiased estimator of α
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for any λ ∈ R. By Equation (3),

λ∗ =
〈Y, (I − Pσ(X))Y 〉
‖(I − Pσ(X))Y ‖2

=
〈Pσ(X)Y + (I − Pσ(X))Y, (I − Pσ(X))Y 〉

‖(I − Pσ(X))Y ‖2

= 1.

(34)

This shows that CMC is optimal from a CV perspective. Avramidis and Wil-
son (1996), and Loh (1995), generalize this approach: Let Z be a zero-mean
random variable in L2(Ω,F ,P), and X a random variable in L2(Ω,F ,P) for
which both E(Y |X) and E(Z|X) can be determined. Then sampling from

Y − λ1(Y − E(Y |X))− λ2E(Z|X)− λ3Z (35)

can be used to form the standard means based estimator for α, for all λ1, λ2, λ3 ∈
R. Repeating the logic leading to (34) we obtain

λ∗1 = 1, λ∗2 =
Cov(E(Y |X), E(Z|X))

Var E(Z|X)
, and λ∗3 = 0.

The conclusion is that,

Var

(
E(Y |X)− Cov(E(Y |X), E(Z|X))

Var E(Z|X)
E(Z|X)

)

≤





Var Y,

Var E(Y |X),

Var
(
Y − Cov(Y,Z)

Var Z
Z

)
,

Var
(
Y − Cov(Y,E(Z|X))

Var E(Z|X)
E(Z|X)

)
,

Var
(
E(Y |X)− Cov(E(Y |X),Z)

Var Z
Z

)
.

In particular, Loh (1995) considers the case of Z = X almost surely in (35),
and Avramidis and Wilson (1996) fix λ1 = 1 and λ3 = 0 in (35). From the
norm perspective,

‖E(Y |X)− α− λ∗2E(Z|X)‖2 = ‖Y − α‖2 − ‖Y − E(Y |X)‖2 − ‖λ∗2E(Z|X)‖2

makes precise the variance eliminated when sampling from E(Y |X)−λ∗2E(Z|X).
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6 Control Variates and Conditional Monte Carlo from a Hilbert
Space Perspective

We now discuss how CMC and CV can be combined to reduce variance co-
operatively; the results of this section appear in Loh (1995), and Glynn and
Szechtman (2002).

Suppose the setting of Example 10: There exists a random variable X ∈
L2(Ω,F ,P) such that the moments EX i are known with E|X|i < ∞ for all
i = 1, 2, . . .. Given a random variable Y ∈ L2(Ω,F ,P), the goal is to find
α = EY by running a Monte Carlo simulation that uses the knowledge about
the moments of X to increase simulation efficiency. Suppose we can sample
from either

a) E(Y |X)−∑d
i=1 λ∗i (X

i − EX i)

or

b) Y −∑d
i=1 λ∗i (X

i − EX i),

to form the standard estimator for α, where the λ∗i are determined by applying
Equation (3) on E(Y |X) and on the controls (X1−EX1, . . . , Xd−EXd). From
the developments of Example 10 it is a short step to:

a) Take W = E(Y |X)− α in Equation (31), consequently:

Var

(
E(Y |X)−

d∑

i=1

λ∗i (X
i − EX i)

)
→ 0, (36)

as d →∞.
b) The triangle inequality and W = Y − α in Equation (31) result in

Var

(
Y −

d∑

i=1

λ∗i (X
i − EX i)

)
→ E Var(Y |X), (37)

as d →∞.

The interpretation of a) is that CV and CMC reduce variance concurrently:
E(Y |X) eliminates the E Var(Y |X) part of Var Y , while

∑d
i=1 λ∗i (X

i − EX i)
asymptotically cancels Var E(Y |X). The effect of

∑d
i=1 λ∗i (X

i − EX i) in part
b) is to asymptotically eliminate the variance component due to E(Y |X) when
using E(Y |X) in the simulation is not possible.
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7 Weighted Monte Carlo

In this section we consider the asymptotic behavior of weighted Monte Carlo
(WMC) estimators, for a large class of objective functions. We rely on Glasser-
man and Yu (2005), and Glasserman (2004), which make precise the connec-
tion between WMC and CVs for separable convex objective functions. Initial
results, under weaker assumptions and just for one class of objectives were ob-
tained in Szechtman and Glynn (2001), and in Glynn and Szechtman (2002).
Applications of weighted estimators to model calibration in the finance con-
text are presented in Avellaneda et al. (2001), and in Avellaneda and Gamba
(2000).

Consider the standard CV setting: (Y1,X1), . . . , (Yn,Xn) are i.i.d. samples
of jointly distributed random elements (Y,X) ∈ (R,Rd) with non-singular
covariance matrix Σ and, without loss of generality, EX = 0 componentwise.
The goal is to compute α = EY by Monte Carlo simulation, using information
about the means EX to reduce estimator variance. Let f : R→ R be a strictly
convex and continuously differentiable function, and suppose that the weights
w∗

1,n, . . . , w
∗
n,n

minimize
n∑

k=1

f(wk,n) (38)

subject to
1

n

n∑

k=1

wk,n = 1 (39)

1

n

n∑

k=1

wk,nXk = 0. (40)

Then, the WMC estimator of α takes the form

ŶWMC =
1

n

n∑

k=1

w∗
k,nYk.

The following observations review some key properties of WMC: The weight
applied to each replication i is w∗

i,n/n, rather than the weight 1/n used to form

the sample mean Ȳ . A feasible set of weights is one that makes ŶWMC unbi-
ased (cf. constraint (39)), and that forces the weighted average of the control
samples to match their known mean (cf. constraint (40)). For every n suffi-
ciently large 0 (=EX) belongs to the convex hull of the replicates X1, . . . ,Xn,
and therefore the constraint set is non-empty. The objective function in (38),
being strictly convex, ensures uniqueness of the optimal solution if the optimal
solution is finite. If wk,n ≥ 0, 1 ≤ k ≤ n, were additional constraints, a feasi-
ble set of weights w1,n, . . . , wn,n would determine a probability mass function
1/n

∑n
k=1 δXk

(·)wk,n, where δx(z) = 1 if z = x and is equal to zero otherwise.
However, as discussed in Hesterberg and Nelson (1998), P (wk,n < 0) = o(n−p)
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uniformly in 1 ≤ k ≤ n if E(‖X‖p) < ∞ indicates that the non-negativity
constraints are asymptotically not binding; see Szechtman and Glynn (2001)
for an example of this scenario.

There are different f ’s depending on the application setting. For example:
f(w) = − log w results in maximizing empirical likelihood; discussed in Szecht-
man and Glynn (2001). The function f(w) = −w log w yields an entropy max-
imization objective; this is the subject of Avellaneda and Gamba (2000), and
Avellaneda et al. (2001). The important case of f(w) = w2 is considered next,
the optimization problem being to

minimize
n∑

k=1

w2
k,n

subject to
1

n

n∑

k=1

wk,n = 1 (41)

1

n

n∑

k=1

wk,nXk = 0.

Solving the optimization problem yields (Glasserman and Yu, 2005) optimal
weights given by

w∗
k,n = 1− X̄TM−1(Xk − X̄), for k = 1, . . . , n, (42)

where M ∈ Rd×d is the matrix with elements Mi,j = 1/n
∑n

k=1(Xi,k−X̄)(Xj,k−
X̄); M−1 exists for all n large enough because M → Σxx a.s. componentwise.
Rearranging terms immediately gives

1

n

n∑

k=1

w∗
k,nYk = ŶCV (λn), (43)

with the benefit that the optimal weights do not depend on the Yk, which
makes this approach advantageous when using CVs for quantile estimation;
see Hesterberg and Nelson (1998) for details.

Regarding Hilbert spaces, consider the space Rn (cf. Example 2) and the set

A(n) =

{
w(n) = (w1,n, . . . , wn,n) ∈ Rn :

1

n

n∑

k=1

wk,n = 1 and
1

n

n∑

k=1

wk,nXk = 0

}
.

It can be verified that A(n) meets the conditions of Result 3 for every n suffi-
ciently large, and consequently it is fair to ask: What element in A(n) is closest
to 1(n) = (1, . . . , 1) ∈ Rn? That is, which element w∗(n) = (w∗

1,n, . . . , w∗
n,n) ∈

Rn

minimizes ‖1(n)−w(n)‖
subject to w(n) ∈ A(n)?
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This problem yields the same solution as problem (41); doing simple algebra
it is easy to verify that w∗(n) with components as in Equation (42) satisfies
condition (26). The conclusion is that w∗(n) is the closest point in A(n) to
1(n), the vector of crude sample weights. Would this Hilbert space approach
to WMC work with f ’s that are not quadratic? Yes, as long as the metric
induced by the inner product meets the defining properties of a metric.

The main result concerning WMC and CV, proved in Glasserman and Yu
(2005) under certain conditions on X, Y , f , and the Lagrange multipliers
associated with constraints (39) and (40), is that

ŶWMC = ŶCV + Op(n
−1),

and, √
n(ŶWMC − α) ⇒ N(0, σ2

WMC),

as n →∞ where
σ2

WMC = σ2
CV ,

and Op(an) stands for a sequence of random variables (ξn : n ≥ 1) such that
for all ε > 0 and some constant δ, P (|ξn| ≥ anδ) < ε. The last result provides
support to the statement that ŶWMC and ŶCV are asymptotically identical.

8 Stratification Techniques

In this section we discuss stratification methods emphasizing the connection
with the Hilbert space and CVs ideas already developed. Refer to Fishman
(1996), Glasserman et al. (1999), and Glynn and Szechtman (2002) for more
details.

Suppose that we wish to compute α = EY , for some random variable Y ∈
L2(Ω,F ,P). Let X ∈ L2(Ω,F ,P). The method of stratification arises when
there is a collection of disjoint sets (“strata”) (Ai : 1 ≤ i ≤ d) in the range of
X such that P (X ∈ ∪d

i=1Ai) = 1 and P (X ∈ Ai) = pi is known for every 1 ≤
i ≤ d. Then, assuming that one can obtain i.i.d. replicates (Yi,k : 1 ≤ k ≤ ni)
from P (Y ∈ ·|X ∈ Ai), 1 ≤ i ≤ d, the estimator of α given by

d∑

i=1

pi

ni

ni∑

k=1

Yi,k (44)

is unbiased, where ni is the number of replicates sampled from P (Y ∈ ·|X ∈
Ai).

For a total number of replications n =
∑d

i=1 ni, proportional stratification
allocates ni = npi samples to strata Ai, 1 ≤ i ≤ d, where for simplicity we
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assume that the npi are integers. The estimator of Equation (44) is then called
the proportional stratification (PS) estimator

ŶPS =
1

n

d∑

i=1

npi∑

k=1

Yi,k,

with variance given by

Var ŶPS =
1

n

d∑

i=1

pi Var(Y |Z = i)

=
1

n
E Var(Y |Z),

(45)

where the random variable Z =
∑d

i=1 iI(X ∈ Ai).

One implication of Equation (45) is that if Y is not constant inside each
strata, then Var ŶPS > 0, so that proportional stratification does not eliminate
the variability of Y inside strata, but rather the variability of E(Y |Z) across
strata. In addition, Equation (45), jointly with the variance decomposition
formula (19), quantifies the per-replication variance reduction achieved by
proportional stratification: E Var(Y |Z) = Var Y − Var E(Y |Z). Observe that
although PS is relatively simple to implement, it does not provide the optimal
sample allocation ni per strata; see Glasserman (2004, p. 217) for more details.

From a CV perspective, PS acts like applying E(Y |Z) − α as a CV on Y ;
ŶPS achieves the same variance reduction as that obtained by averaging i.i.d.
replications of Y − (E(Y |Z) − α). Of course, sampling from the distribution
of Y − (E(Y |Z)− α) is impractical because α is unknown.

Regarding Hilbert spaces, Equation (45) is simply

n Var ŶPS = ‖(I − Pσ(Z))Y ‖2. (46)

In addition, ŶPS satisfies the following CLT:

n1/2(ŶPS − α) ⇒ N(0, σ2
PS) as n →∞,

where σ2
PS = E Var(Y |Z), which enables the construction of asymptotically

valid confidence intervals for α.

Post-stratification offers an alternative to proportional stratification when
sampling from P (Y ∈ ·|X ∈ Ai) is not possible, but when it is possible to
sample from the distribution of (X, Y ). Specifically, we construct the unbiased
estimator

ŶpST =
d∑

i=1

pi

∑n
k=1 YkI(Xk ∈ Ai)∑n

j=1 I(Xj ∈ Ai)
.
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Using the Delta method (cf. Section 2) it is easy to prove a CLT for ŶpST :

n1/2(ŶpST − α) ⇒ N(0, σ2
pST ),

as n → ∞, where σ2
pST = E Var(Y |Z). However, for every stratum we know

a priori that EI(X ∈ Ai) = pi, which suggests the use of the vector (I(X ∈
Ai)− pi : 1 ≤ i ≤ d) as a control. More specifically, an unbiased CV estimator
is given by

ŶCV (λ) =
1

n

n∑

j=1

(
Yj −

d∑

i=1

λi(I(Xj ∈ Ai)− pi)

)
.

Using Equation (3), the optimal coefficients λ∗i , 1 ≤ i ≤ d are immediately
found to be

λ∗i = E(Y |Z = i), for 1 ≤ i ≤ d.

That is,

ŶCV (λ∗) =
1

n

n∑

j=1

(Yj − (E(Y |Zj)− α)) ,

and

Var ŶCV (λ∗) =
1

n
E Var(Y |Z).

Therefore, n(Var ŶCV (λ∗) − Var ŶpST ) → 0 as n → ∞. With a little more
effort, it can be shown that

n1/2
(
ŶpST − ŶCV (λ∗)

)
⇒ 0,

as n → ∞. In other words, ŶpST and ŶCV (λ∗) have the same distribution up
to an error of order op(n

−1/2), as n →∞; where op(an) denotes a sequence of
random variables (ξn : n ≥ 1) such that a−1

n ξn ⇒ 0 as n →∞.

Given the strata (Ai : 1 ≤ i ≤ d), it is always possible to find finer strata that
further reduce estimator variance. In the case of proportional stratification,
suppose that it is possible to split each stratum Ai into integer ni = npi strata
(Ai,k : 1 ≤ k ≤ ni) such that P (X ∈ Ai,k) = 1/n; i.e., the bivariate random
vector Vn =

∑d
i=1

∑ni
k=1(i, k)I(X ∈ Ai,k) is uniformly distributed on the lattice

{(i, k) : 1 ≤ i ≤ d, 1 ≤ k ≤ ni}. Assume in addition that it is possible to
sample from P (Y ∈ ·|X ∈ Ai,k). Then the refined proportional stratification
(rST) estimator is

ŶrST =
1

n

d∑

i=1

npi∑

k=1

Yi,k,

where the Yi,k are sampled from P (Y ∈ ·|X ∈ Ai,k). Proceeding as in (45), we
arrive at

Var ŶrST =
1

n
E Var(Y |Vn).
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The fact that ‖E(Y |Vn)−EY ‖2 = ‖E(Y |Vn)−E(Y |Z)‖2 + ‖E(Y |Z)−EY ‖2

shows that Var E(Y |Vn) ≥ Var E(Y |Z), and therefore

Var ŶrST ≤ Var ŶPS.

With regards to Example 9, the conditions leading to Equation (28) apply, so
that as n →∞

Var(E(Y |X)− E(Y |Vn)) → 0,

and

Var(Y − E(Y |Vn)) → E Var(Y |X).

In particular, n Var ŶrST → E Var(Y |X). This result should come as no sur-
prise because as n grows we get to know the full distribution of X, not unlike
the setting of Equations (36) – (37): rST presumes knowledge of an increasing
sequence of σ-algebras that converge to σ(X), whereas in Equations (36) –
(37) we have information about the full sequence of moments of X.

As to control variates, rST produces the same estimator variance as the stan-
dard CV estimator formed by i.i.d. sampling from Y − (E(Y |X) − α), as
n → ∞. Similar to (46), we can write n Var ŶrST → ‖(I − Pσ(X))Y ‖2, as

n →∞. Finally, the CLT satisfied by ŶrST is

n1/2(ŶrST − α) ⇒ N(0, σ2
rST ),

as n →∞, where σ2
rST = E Var(Y |X).

To conclude this section, we mention the link between post-stratification and
WMC. Write

w∗
k,n =

d∑

i=1

piI(Xk ∈ Ai)∑n
j=1 I(Xj ∈ Ai)

, (47)

for 1 ≤ k ≤ n, then the WMC estimator ŶWMC =
∑n

k=1 w∗
k,nYk equals ŶpST . It

can be confirmed that the weights given in Equation (47) are the solution of the
optimization problem with objective function min

∑n
k=1 w2

k,n and constraints∑n
k=1 wk,nI(Xk ∈ Ai) = pi, 1 ≤ i ≤ d, and

∑n
k=1 wk,n = 1. Interpreting at face

value, w∗
n with elements as in (47) is the closest point in the set determined

by the constraints to the vector consisting of n ones.

9 Latin Hypercube Sampling

We now discuss the method of Latin hypercube sampling (LHS) from a Hilbert
space and CV perspective. McKay et al. (1979), Stein (1987), Owen (1992),
and Loh (1996) are standard references for LHS. We rely on Mathé (2000),
which gives a good account of LHS from a Hilbert space point of view.
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Avramidis and Wilson (1996) is also a valuable reference for the issues we
consider.

Suppose the setting of Examples 3 and 8: We have mutually independent
random variables X1, . . . , Xd, each with known distribution function Fi, and
the goal is to compute

α = Ef(X) =
∫

f(x)dF (x)

via simulation, where f : Rd → R is a square integrable function with respect
to F (x) =

∏n
d=1 Fi(xi), x = (x1, . . . , xd), and X = (X1, . . . , Xd).

LHS generates samples of X as follows:

(i) Tile [0, 1)d into nd hypercubes ∆l1,...,ld =
∏d

i=1[
li−1

n
, li

n
), li = 1, . . . , n,

i = 1, . . . , d, each of volume n−d.
(ii) Generate d uniform independent permutations (π1(·), . . . , πd(·)) of {1, . . . , n}.
(iii) Use the output of (ii) to choose n hypercubes from (i): ∆π1(k),...,πd(k) for

the k’th tile, k = 1, . . . , n.
(iv) Uniformly select a point from within each ∆π1(k),...,πd(k), and generate Xi,k

by inverting Fi at that point.

Notice that (i) – (iv) are

Xi,k = F−1
i

(
πi(k)− 1 + Ui(k)

n

)
, 1 ≤ i ≤ d, and 1 ≤ k ≤ n, (48)

where the Ui(k) are i.i.d. uniform on [0, 1]. The LHS estimator is the average
of the n samples f(Xk), each Xk = (X1,k, . . . , Xd,k) obtained according to
(48):

ŶLHS =
1

n

n∑

k=1

f(Xk).

As in refined stratification, given a sample size n, LHS assigns one sample to
each strata Ai,k given by

Ai,k =

[
F−1

i

(
k − 1

n

)
, F−1

i

(
k

n

))
, 1 ≤ i ≤ d, 1 ≤ k ≤ n,

with the sample uniformly distributed within the strata. Where refined pro-
portional stratification applied to a particular Xi asymptotically eliminates
the variance due to E(f(X)|Fi) (cf. Example 8 for the definition of Fi) along
just one dimension i, LHS asymptotically eliminates Var

∑d
i=1 E(f(X)|Fi) at

the same rate used by rST used to eliminate only Var E(f(X)|Fi).

Figure 2 illustrates LHS with d = 2, n = 4. Each dot in the lower left square is
a sample from (πi(k)− 1+Ui(k))/n. The position of each dot within a square
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Fig. 2. Latin hypercube sampling

is uniformly distributed according to the Ui(k); the permutations πi(k) ensure
that there is just one dot per row and per column. The lower right region
depicts F1 and the four equiprobable strata for X1, with one sample point
F−1

1 ((π1(k)− 1 + U1(k))/n) per strata A1,k; the final output are the samples
X1,1, . . . , X1,4. In the upper left F2 is pictured with the axes inverted; it has
the same explanation as that of F1, with the final output being the samples
X2,1, . . . , X2,4.

Stein (1987) demonstrates that when f ∈ L2(dF ),

Var ŶLHS =
1

n
Var

(
f(X)−

d∑

i=1

E(f(X)|Fi)

)
+ o(n−1), (49)

as n → ∞, which makes precise the variance reduction achieved by LHS, up
to order o(n−1).

The CLT satisfied by ŶLHS, proved in Owen (1992) under the condition that
f(F−1(·)) is bounded on [0, 1]d is

n1/2(ŶLHS − α) ⇒ N(0, σ2
LHS), (50)
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as n →∞, where

σ2
LHS = Var

(
f(X)−

d∑

i=1

E(f(X)|Fi)

)
.

Equation (50) provides theoretical support for the construction of a valid
confidence interval for α, whose width depends on σLHS. This term is generally
not known prior to the simulation, nor easily estimated from the simulation
data. Section 3 of Owen (1992) deals with the estimation of σ2

LHS from LHS
data, and shows how to use the LHS samples to find an estimator for σ2

LHS

which is within n−1/2 in probability of σ2
LHS as n → ∞. This permits the

formation of an asymptotically valid confidence interval for α.

As to standard Monte Carlo, Owen (1997) proves that LHS is no less efficient
because

Var ŶLHS ≤ Var f(X)

n− 1
,

for all n ≥ 2 and d ≥ 2. In other words, even if the variance eliminated by LHS,
Var

∑d
i=1 E(f(X)|Fi), is small, LHS with n samples is no less efficient than

standard Monte Carlo with n− 1 replications. Of course, the only measure of
efficiency in this argument is variance, a more complete analysis would take
into account the computational cost of generating sample variates.

Example 8 leads into the Hilbert interpretation of LHS. In particular, Equa-
tions (25) and (49) imply

lim
n→∞n Var ŶLHS = Var

(
f(X)−

d∑

i=1

E(f(X)|Fl)

)
= ‖(I − PM)f‖2. (51)

That is, LHS takes the remainder from projecting f on the subspace M deter-
mined by the span of the linear combinations of univariate functions. Using
the last equation, LHS eliminates variance because

Var f(X) = ‖(I − P0)f‖2

= ‖PM(I − P0)f‖2 + ‖(I − PM)(I − P0)f‖2

≥ ‖(I − PM)(I − P0)f‖2

= ‖(I − PM)f‖2,

where

‖PM(I − P0)f‖2 =
d∑

i=1

‖Pi(I − P0)f‖2 =
d∑

i=1

Var E(f(X)|Fi)

is the variance eliminated by LHS. If f ∈ M , then Equation (51) also shows
that n Var ŶLHS → 0 as n →∞; in other words, LHS asymptotically eliminates
all the variance of f if f is a sum of univariate functions.
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Much more can be said about Var f(X). Suppose for simplicity that the Xi are
Uniform [0, 1] random variables, so that α =

∫ 1
0 f(x)dx. Let u ⊆ {1, 2, . . . , d}

and define dx−u =
∏

j 6∈u dxj. Then, if f is square integrable, there is a unique
recursion

fu(x) =
∫

f(x)dx−u − ∑
v⊂u

fv(x) (52)

with the property that
∫ 1
0 fu(x)dxj = 0 for every j ∈ u, and

f(x) =
∑

u⊆{1,2,...,d}
fu(x);

see, for example, Jiang (2003) for a proof. Recursion (52) actually is the Gram-
Schmidt process, and it splits f into 2d orthogonal components such that

∫
fu(x)fv(x)dx = 0,

for u 6= v, and
σ2 =

∑

|u|>0

σ2
u, (53)

where σ2 =
∫
(f(x) − α)2dx is the variance of f(X), and σ2

u =
∫

f 2
u(x)dx is

the variance of fu(X). The conclusion in this context is that LHS eliminates
the variance of the fu for all u with |u| = 1. The setting of this paragraph is
known as functional ANOVA; see Chapter 13 for more details on this topic.

Considering control variates, we can say that the estimator formed by averag-
ing i.i.d. replicates of f(X)−∑d

i=1(E(f(X)|Fi)−α) has the same asymptotic
variance as ŶLHS. Moreover, given a zero-mean control variate h(X), h a de-
terministic function, obtain n Latin hypercube samples of X using (48), and
form the combined LHS+CV estimator

ŶLHS+CV (λ) =
1

n

n∑

k=1

(f(Xk)− λh(Xk)) .

Then, n(Var ŶLHS+CV (λ)−Var ŶLHS) → 0 for any control of the type h(X) =∑d
i=1 hi(Xi) because h ∈ M and property a) of the projection operator together

imply (I − PM)(f − λh) = (I − PM)f for all λ ∈ R. Using Equations (4) and
(49):

Var ŶLHS+CV (λ∗) = Var ŶLHS(1− ρ2),

where ρ2 is the square of the correlation coefficient between

f(X)−
d∑

i=1

E(f(X)|Fi) and h(X)−
d∑

i=1

E(h(X)|Fi).

In other words, a good CV for f(X) in the LHS context is one that maximizes
the absolute value of the correlation coefficient of its non-additive part with
the non-additive part of f(X). Notice that λ∗ is the optimal CV coefficient
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associated with the response f(X) − ∑d
i=1 E(f(X)|Fi) and the CV h(X) −∑d

i=1 E(h(X)|Fi); refer to Owen (1992) for the estimation of λ∗ from sample
data.

Additional guidance for effective CVs in the LHS setting is provided by (53):
Choose a CV with non-additive part that is highly correlated with fu’s, |u| > 1,
that have σ2

u large.

As regards weighted Monte Carlo, consider using LHS to generate replicates
X1, . . . ,Xn, and the optimization problem

minimize
n∑

k=1

w2
k,n

subject to
n∑

k=1

wk,n = 1 (54)

n∑

k=1

wk,nI(Xi,k ∈ Ai,j) =
1

n
, for i = 1, . . . , d and j = 1, . . . , n.

Clearly w∗
k,n = 1/n, k = 1, . . . , n, is feasible for (54), and it is also optimal by

the developments of Section 7, so that the WMC estimator
∑n

k=1 w∗
k,nf(Xk)

coincides with ŶLHS for every n ≥ 1. For d = 1, problem (54) furnishes a
WMC estimator that equals ŶrST ; in other words, for d = 1 LHS yields the
same variance reduction as rST in the limit as n →∞.

10 A Numerical Example

In this section we present a numerical example that supports many of the re-
sults discussed in the chapter. Consider the stochastic activity network (SAN)
of Loh (1995) depicted in Figure 3 (see also the SAN discussion in Chapter
1) with arcs X1, X2, X3, X4, X5 that are independent random variables that
represent activity durations. The problem of numerically computing the ex-
pected duration of the shortest path that leads from the source node a to the
sink node z involves estimating α = EY , where Y = min{X1 +X2, X1 +X3 +
X5, X4 + X5}. For the purposes of this example, we assume that the Xi’s are
exponentially distributed with parameters µ1 = 1.1, µ2 = 2.7, µ3 = 1.1, µ4 =
2.5, µ5 = 1.2.

Given an inner sample size n, we wish to appraise the variability of:

• The crude Monte Carlo estimator Ȳ .
• The control variates estimator ŶCV (λn), using the first moments of the Xi’s

as control variates.
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• The conditional Monte Carlo estimator ŶCMC . Because the durations of the
three paths that lead from a to z are conditionally independent given X1

and X5, E(Y |X1, X5) can be found analytically; see Loh (1995, p. 103).
• The weighted Monte Carlo estimator ŶWMC , with f(w) = − log w in Equa-

tion (38).
• The stratification estimator ŶrST , where we stratify on X1.
• The Latin hypercube estimator ŶLHS applied to X1, . . . , X5.

In order to compare the variance of these estimators, we repeat m = 1000
times the simulation to obtain Ȳ (m), . . . , ŶLHS(m) by averaging Ȳ , . . . , ŶLHS

over m . The (sample) standard deviations of these six estimators are s(m, n),
sCV (m,n), sCMC(m,n), sWMC(m,n), srST (m,n), and sLHS(m,n).

The results are summarized in Table 1. As expected, sCV (m,n) ≈ sWMC(m,n),
and sLHS(m,n) < srST (m,n) for each n. Notice that srST (m,n) and sLHS(m,n)
behave like a constant divided by n1/2 for each n, which indicates that rST
and LHS achieve their variance reduction potential by n = 100.

11 Conclusions

We presented various variance reduction techniques for terminating simula-
tions in the Hilbert space setting, establishing connections with CV, CMC,
and WMC whenever possible. It is the geometric interpretation of Result 2
that makes this approach especially tractable.

There are, however, several topics missing from our coverage where Hilbert
space theory might yield valuable insights. Consider for instance the case of
variance reduction techniques for steady-state simulations that have a suitable
martingale representation; see, for example, Henderson and Glynn (2002). It is
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Sample size n

Parameter 100 1000 10000

s(m,n) 0.0529 0.0162 0.0053

sCV (m, n) 0.0392 0.0112 0.0036

sCMC(m,n) 0.0328 0.0102 0.0033

sWMC(m,n) 0.0395 0.0116 0.0038

srST (m,n) 0.0456 0.0144 0.0044

sLHS(m,n) 0.03 0.0093 0.0030

Table 1. SAN Numerical Example

well-known that square integrable martingale differences have a simple inter-
pretation in the Hilbert space framework, which suggests that it might be pos-
sible to obtain additional insights when dealing with such techniques. Another
area of interest is the Hilbert space formulation of CVs in the multi-response
setting, where Y is a random vector; see Rubinstein and Marcus (1985) for
relevant results. The combination of importance sampling (cf. Chapter 12)
with CVs also can be studied in the Hilbert space setting; see, for example,
Hesterberg (1995), and Owen and Zhou (1999).
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